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LElTER TO THE EDITOR 

On the mean-field spin-glass instability at finite fields 

V JaniS 
Institute of Physics, Czechoslovak Academy of Sciences, Na Slovance 2, CS-180 40 Prague, 
Czechoslovakia 

Received 24 July 1987 

Abstract. We investigate the instability of the high-temperature phase of the Sherrington- 
Kirkpatrick model at finite magnetic fields. We find that the relevant function for this 
analysis is q"2'(h'", h'")= (m,(h('))mt(h(*')av with two external fields h"' and h"' and 
reveal its non-analytic structure at the critical point. We indicate that the field breaking 
the 'hidden' symmetry of the high-temperature solution and causing a breakdown of linear 
response theory is U h"'- h"'. 

The mean-field theory of spin glasses, being a solution of the long-range Ising model 
with random interactions, of Sherrington and Kirkpatrick (1975) (sK) ,  is now under- 
stood to a great extent (for a recent review, see Binder and Young (1986)). It is 
generally accepted that the exact solution of the SK model yields the mean-field 
equations of Thouless et a1 (1977) (TAP) for one-bond configuration. These equations 
are taken as a starting point for a configurational averaging. At present, there are two 
successful ways of averaging the TAP equations at low temperatures: Parisi's replica 
symmetry breaking scheme (Parisi 1979, 1980a, b, c) and Sompolinsky's dynamical 
solution (Sompolinsky 1981, Sompolinsky and Zippelius 1981). Though initially 
invented within other approaches, it was afterwards shown that they both can be 
derived from the TAP equations after appropriate averaging (De Dominicis and Young 
1983, MCzard et a1 1986, Dasgupta and Sompolinsky 1983, Sommers et a1 1983). 
However, they do not represent a direct way of averaging the TAP equations, since 
they use ansatze concerning a presumed low-temperature behaviour of spin glasses. 
These ansatze are different in Parisi's and Sompolinsky's approaches and are chosen 
in such a way as to obtain a marginally stable solution below the instability line of de 
Almeida and Thouless (1978) (AT). The additional information needed about the low- 
temperature behaviour of spin glasses is provided by numerical analysis of the SK 
model which says that this model and the TAP equations have many solutions at very 
low temperatures (Sherrington and Kirkpatrick 1978, Bray and Moore 1980b, De 
Dominicis et a1 1980, Tanaka and Edwards 1980). We thus need infinitely-many-order 
parameters (e.g. q ( x ) ,  x E (0, 1)) to determine the low-temperature spin-glass phase. 
Using this fact, we obtain a reasonable interpretation of the order-parameter function 
q ( x )  of Parisi and Sompolinsky and a consistent picture of a complex many-valley 
phase space of spin glasses in infinite dimensions. Although equivalent in their main 
features, Parisi's and Sompolinsky's approaches differ in some aspects and predictions 
(cf Binder and Young 1986). We may thus ask what is the arbitrariness in the 
constructions of the low-temperature solutions of the SK model or, equivalently, whether 
there is an unambiguous way of averaging the TAP equations. Another question not 
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yet satisfactorily explained is why the diagrammatic approach (Sommers 1978), rep- 
resenting the direct way of averaging the TAP equations, actually breaks down below 
the AT line and why it fails to meet the instability at finite fields. The breakdown of 
the diagrammatic averaging is only brought into connection with a breaking of linear- 
response theory (Bray and Moore 1980a, Sommers 1983). This is deduced from the 
divergence of the spin glass susceptibility ,ySG about which the diagrammatic solution 
does not yield any information. However, what the field is with respect to which linear 
response should be broken at finite magnetic fields, i.e. the symmetry breaking field, 
has not yet been specified. 

In this letter, following the diagrammatic averaging of the TAP equations (Sommers 
1978), we analyse the behaviour of the high-temperature solution of the SK model 
close to the AT line. We characterise the spin-glass transition by a symmetry breaking 
field and thus clarify the notion of the breakdown of linear response theory at finite 
fields and explain the failure of the SK solution to meet the spin-glass transition at 
finite fields. 

The SK spin-glass model is described by a Hamiltonian 

H = -f C J,,S,S, - C h,S, (1) 

with N Ising spins S, = *1 interacting via a set of exchanges J,,. The J,, are independent 
Gaussian random variables with 

,J I 

(I,),,, = o (J;,),, = J * /  N.  
We shall assume in this letter only a non-zero homogeneous external magnetic field 
h, = h. The mean-field equations of TAP determine magnetisations m, : 

(3) m, = tanh(ph + v , )  
where 

are local internal fields and p = ( k B T ) - ' .  Sommers (1978) showed that these fields are 
independent Gaussian random variables with 

( V J , "  = 0 (vf),, = 0 = (PJ)",, * ( 5 )  
The local fields 7, are functions of the external field h. We now shall assume a weak 
noise in the external field h and suppose an uncertainty in the determination of the 
dependence m , ( h )  i n  TAP equations (3).  We are then to introduce an order parameter 
q'"' as a function of two magnetic fields h"' and h'": 

q' I *  '( h ( ' ), A'") = ( m ,  ( h ' ') m, (h" I ) ) , ,  ( 6 )  
where m , ( h " ' )  and m,(hI2')  are solutions of TAP equations ( 3 )  with external fields h'" 
and h"', respectively. Such a two-field function was introduced within the replica way 
(Blandin er a1 1980, Parisi 1983), but its importance for the stability analysis of the 
high-temperature solution has not yet been revealed. However, it is almost immediately 
clear that q( ' * ' (  h"', h"') is the relevant function to be studied since its second derivative 
is closely related to the spin-glass susceptibility 

diverging at the transition to the spin-glass condensed phase. 
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We can evaluate the function q“”( h ‘ l ) ,  h‘”) analogously as q E A (  h )  was calculated 
in the Sommers paper with the only exception that we must distinguish two sets of 
internal fields v!.’), ~ 1 ~ )  being random Gaussian variables but not independent. Their 
overlap 

is a new function in addition to q‘” ’=  q EA ( h “ ) ) ,  q‘”’= q E A ( h ” ’ )  which should be 
self-consistently determined. The set of self-consistent equations is obtained after a 
slightly modified Sommers procedure of averaging of the TAP equations. They are: 

where A =  Q ( l l ) Q ( 2 2 )  - Q ( 1 2 ) ‘  . q”” is obtained from (8a)  by a simple interchange 1-2. 
The expression on the right-hand side of (86) is not manifestly symmetric with respect 
to the interchange h‘”-h‘*’  since we have chosen a simpler diagonalisation of the 
matrix @ O b )  than the symmetric one. If the function q(I2’ is analytical, i.e. all derivatives 
are continuous, then 

and q”” reduces in this limit to q“” of (8a).  If (9) is violated, q“” need not be 
identical with q‘”’ even at h‘l’ = h‘” and the S K  solution no longer has sense. We now 
show that the AT line can be defined as a line along which (9) is broken. We show 
that the first derivatives of q”” are discontinuous and the second derivatives diverge 
at this line only if we approach the critical field h“’ = h‘” = h,( T )  along any trajectory 
in ( h “ ) ,  h‘”) space different from the diagonal h ‘ ” =  h‘” representing the SK solution. 

To evaluate the first and second derivatives of q“”, we use some abbreviations, 
namely the brackets for the normalised integration over j ( l ’  and i j ‘ 2 )  from (8) and 
primes for derivatives with respect to either h‘” or h‘” when it is unambiguous. 
Otherwise, we add the subscript following the comma for specification of the derivative. 
We further denote 

t , .2  = tanh x l . 2  

It is now simple to prove from (8) the variational formula 

S ( f &  = (f””+(f1f~)sh‘”(f:f2)”“” +(fI~)”(f’l~)s0‘’*’ (10) 
where f l  and f 2  are arbitrary functions of x 1  and x 2 ,  respectively. Formula (10) 
considerably simplifies the evaluation of the respective derivatives of q‘12’( 0‘”’). After 
applying (10) to (8) we obtain 

[ ( / 3 J ) - 2  - ( t  I t ; ) ]Q! ;2 ) ’  = ( t i  t2) + (f;l t*)fQ(’I)’  (1la)  
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+ f [ ( r ,  t") + 4( t  i r y )  + 3 ( r  y2)] Q" I )" (126) 

and analogously for Q!:"', Q;;;)'', Q""' and Q""". Inserting the expressions for the 
derivatives of t = tanh, i.e. 

t'  = 1 - t 2  

r "" = 8 t ( 1 - t * ) ( 2 - 3 t ' ) 
we would get explicit formulae for the derivatives, but they are rather lengthy and not 
interesting enough to be listed here. 

Trivial manipulations of ( 1 1 )  and (12) are needed to prove that the limit in (9) 
holds true (at least up  to n = 2 )  only if 

t " =  -2t( 1 - t') r"' = -2( 1 - t ' )  ( 1 - 3 t') 

P2J2((1-t:)2)# 1 .  (13) 

Stability of the solution, moreover, demands positivity of the LHS of ( 1 1 ) .  However, 
the most interesting situation is at the critical point h,( T ) ,  where (13) does not hold. 
We now expand Q"" around this critical point in the high-temperature phase, where 
the solution of (8) is stable. We denote 

= h " ' + h ' * ' -  2h,( T )  2 0 = h" ' -  h'2' I U J G U  

and  suppose that they are small, since Q(12' is continuous at h"' = hI2' = h,( T ) .  We 
then expand Q'"' from (8) around h,( T )  to second powers of U, U and the variation 
of Q"" denoted AQ"". We obtain a quadratic equation for AQ'l". Its solution can 
be expressed in U, U and functions evaluated at hc( T ) ,  where Q'"'(h,( T ) ,  h,( T ) )  = 
Q(I')(h,(  T ) ,  hc( T ) )  = Q'22'(h,( T ) ,  h,( T ) )  = Q. The resulting expression for AQ"*'(u, U )  
is 

1 AQ""(u, U )  = ~ Q ' u  - - ( ( V I " ) U  
2 ( 1 "2) 

We have used a condensed notation 

Qt l2= 2t't''"t't'''+ f''*)Q' 
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and 

The brackets represent the integration from ( 8 a )  at h,( T ) .  Stability demands the plus 
sign in (14) in the high-temperature phase. Equation (14) is the principal result of 
this letter. It displays the type of non-analyticity of the overlap function Q(12'(h(1', h"') 
at h"' = h"' = h,( T ) .  We can now draw consequences from this formula. First, the 
SK solution is a special case of (14), namely @ I 2 ' (  U, 0). This function is analytical, as 
a function of one variable U, and no divergences appear at h , ( T ) .  The SK solution 
only changes the sign of the square root in (14) below the AT line. Thus, the failure 
of the diagrammatic approach (or the S K  solution) to meet the spin-glass instability 
at h,(T)  is because it uses only the variable U. Second, whenever we approach the 
critical point h,( T )  along any trajectory with U # 0, all second derivatives of Q''2' 
diverge. Moreover, the values of the first derivatives of ( ) ' I2 '  at h,( T )  depend on the 
way we approach the critical point. These derivatives are monotonous functions of 
the ratio I u ~ / u  and acquire the maximal absolute values at I U ( / U  = 0 (the SK solution) 
and the minimal ones for lu l /u  = 1. Third, formula (14) enables us to determine a 
symmetry breaking field. This field can be characterised as a variable according to 
which some derivative of the free energy (or the order parameter) diverges at the 
critical point. Because 

a2AQ(I2' (  U, U )  I 
JV' C = O  

diverges at U = 0, this symmetry breaking field can be identified with U = h"' - h"'. 
Notice that odd derivatives with respect to U vanish at U = 0, U = 0. Thus, the breaking 
of linear response theory in spin glasses means that below the AT line ( U  < 0) Q'12' as 
a function of u2 admits another solution at U = 0 in addition to Q'"' = QSK. This 
conclusion is in agreement with the existing low-temperature solutions (Parisi 1983, 
Binder and Young 1986). To describe the low-temperature phase, we must introduce 
explicitly the field U into the free energy and then perform the Legendre transformation 
to the new order parameter. Keeping U = 0, we have no tool (except for replicas) for 
the introduction of the low-temperature order parameter(s), analogously to the ferro- 
magnet, if we do not break the global spin-flip symmetry. However, it is not clear 
whether the construction of the free energy as a function of U can be done un- 
ambiguously. The inability to define the values of the derivatives of Q"" at h,(T) 
indicates problems with the multiplication of magnetisations (or internal fields vi) at 
the same field h below the AT line. This is very reminiscent of point multiplication of 
generalised functions. We are then to regularise the multiplication of magnetisations, 
which leads to the introduction of infinitely many new (order) parameters. In the light 
of this, the present low-temperature constructions of the solution of the S K  model can 
be viewed as regularisation schemes for point multiplication of generalised functions. 
The result of the previous reasoning, i.e. that the only order parameter conjugated to 
the symmetry breaking field U is not sufficient for a description of the low-temperature 
phase is supported by the fact that U does not fully regularise the solution below the 
AT line ( u < O ) .  The physical limit u + O  cannot be simply performed even if we go 
beyond the linear response in U. 

To summarise, we have shown that the quantity of principal importance for spin 
glasses is q'12'( h"', h"') instead of the Edwards-Anderson parameter qEA( h ) .  We have 
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disclosed its non-analytic behaviour at the AT instability line and found a field breaking 
the ‘hidden’ symmetry of the high-temperature phase. This field then naturally explains 
the notion of the breakdown of linear response theory at finite fields and the failure 
of the SK solution to predict the instability. Knowledge of the symmetry breaking field 
enables us to deduce the type of spin-glass instability and the appearance of the 
low-temperature order parameters, entirely from the high-temperature behaviour close 
to the critical line, without using replicas and additional assumptions. 
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